Critical loading of trace elements on agricultural land in Canada

1 1 H 1.008 3 Li 6.941 11	9.										1000					, , , ,	18 He 4.003 10 Ne 20.18
22.99	24.31	3	4	5	6	7	8	9	10	11				1		45	Ar 39.95
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu			2				36 Kr
39.10	40.08	49.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37 Rb 85.47					42 Mo 95.94	43 Tc 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 11-2-4	49 In 114 9	50 Sn 119 7	51 Sb 121.0	52 Te 127 6	53 126.0	54 Xe 121.3
55 Cs 132.9					74 ₩ 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	2		VA	•	-	1	6 In 2.0
87 Fr 223					106 Sg 263.1	107 Bh 264.1	108 Hs 265.1	109 Mt 268	110 Uun 269	111 Uuu 272					1	X	18 uo 93
					60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	14		S.				V
	and the				92 U 238.0	93 Np 237.0	94 Pu 244.1	95 Am 243.1	96 Cm 247.1	97 Bk 247.1	2		2	A		P	
			C00-3	300-62							/	7		Le .	P		\$

Critical loading of trace elements on agricultural land in Canada – Kd survey and sensitivity analysis Steve Sheppard Marsha Sheppard ECOMatters Inc., Pinawa, Manitoba, Canada, sheppard@ecomatters.com

Cindy Grant

Agriculture and Agri-Food Canada, Brandon, Manitoba, Canada, cgrant@agr.gc.ca

Agricultural land in Canada

Program context

- NAHARP (National Agri-Environmental Health Analysis and Reporting Program)
 - About 21 indicators
 - Trace element critical loads is one
 - Final reporting ~2008

Sheppard, M.I., Sheppard, S.C. and Grant, C. 2006. Critical load approach for a trace element risk indicator for agricultural soils in Canada. Can. J. Soil Science (in press).

Where we are now - inputs fertilizers (e.g., Cd in P fertilizer) animal supplements (Cu, Zn, As, etc) 18 He 1.008 4.003 atmosphere (rainfall chemistry) Ne 20.18 Ar sewage sludge 11 9 10 Fe Co Ni Kr 58.93 58.69 63.55 65.39 74.92 83.80 44 45 46 47 48 49 42 43 54Rb Mo Pd Te Ru Rh Åq Te Xe 85.47 95.94 98.91 102.9 106.4 101.1C.s Re Pt Au Ir: could add irriga 195.1 197.0 110 Fr Mr 223 263.1 264.1 269 64 62 Nd Pm Sm Eu Tb 144.2 146.9 152.0 157.3 158.9 150.416 97 U Np Pu Äm Cm Bk 237.0 244.1 243.1 247.1 247.1 238.0

Fertilizer inputs

- Spatially distributed crop acreages
- National sales records
- Survey of retail agronomists to obtain materials and typical rates of application

Animal supplements

- Feed supplements
 - nutritional needs (Zn, Mn)
 - hormesis (Cu in pigs)
- Pharmaceuticals

 e.g., Roxarsone (As)
- Other

– hoof dips (Cu)

Survey of Kd across Canada

- 112 soils to date, ~54 elements
- Field-capacity or saturated porewater extracted by centrifuge
- Strong acid or strong acid+HF to obtain totals
- Indigenous versus spiked elements

Kd results

- 'pedotransfer' functions for 15 elements
 Residual GSD remains 4-fold
- log Kd values correlated with cation (K):
 Al, Ca, Cs, Cu, Ga, In, Mg, Mo, Na, Nb, Ni, Pb, Rb, Sb, Sn, Sr, Tl, U, V, Zn, Zr
- log Kd values correlated Ce/Rare Earths:
 As, Ba, Be, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, La, Li, Lu, Mn, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Tb, Th, TI, Tm, U, V, W, Y, Yb, Zn, Zr

$logKd_{Cd} = 1.8 + 0.21$ (soil pH)

Figure 2. Estimated solid/liquid partition coefficients (Kd) for Cd in all agricultural soil in Canada.

When is Kd important?

At 10 years, anything with Kd>20 L/kg does not move At 300 years, need to know Kd up to 1000 L/kg

Sensitivity analysis – loss terms

- As, Cd, Cu, Pb, Se, Zn
- Variation
 - set to represent measurement uncertainty and national-scale spatial variation
- Results:
 - Bioturbation usually the dominant loss
 - Leaching sometimes up to 98% of loss
 - Crop take-off always <40% of loss</p>
 - Volatilization important for Se

Median (and maximum) contributions to loss (as % of total loss rate)

	As	Cd	Cu	Pb	Se	Zn
Leaching	10	5	6	0	3	18
	(95)	(93)	(94)	(56)	(95)	(98)
Crop	0	0	1	0	0	2
take-off	(1)	(16)	(25)	(2)	(1)	(40)
Bioturb.	90	94	93	100	12	78
	(100)	(100)	(100)	(100)	(90)	(100)
Volat.					81 (100)	

Bioturbation loss rate

- Müller-Lemans and van Dorp (1996)
- Cs migration in soil
- λ = 0.008 per annum for top 20 cm

Challenges

- Sewage sludge 'hot spots', spatially stochastic?
- Livestock can we simply quantify mineral inputs?
- Bioavailability Kd or free-ion or BLM?
- Losses what losses are real losses (erosion, bioturbation, particle migration)?
- Which elements to add?

Conclusions and Acknowledgments

>A work in progress, a national 'report card'

What fraction of agricultural soil in Canada is at risk from trace element contamination?

- ✓ Funding
 - Agriculture and Agri-Food Canada
 - (Environment Canada)